
Advisor: Dr. Chris Pollett 

Committee Members : Dr. Thomas Austin 
and Mr. James Casaletto

Neural Net CAPTCHA Cracker
by

Geetika Garg



Agenda

• Introduction to Project
• Preliminary Work Summary
• Our Approach
• Neural Networks
• Experiments
• Results
• Conclusion
• Demo



Introduction to Project

• Tried decoding CAPTCHAs using deep neural 
networks.

• CAPTCHA: Completely automated Public Turing test to 
tell Computers and Humans Apart.

• Helps to distinguish between humans and computers.

• First mentioned in a paper by Moni Naor [1] in 1996



Characteristics of a CAPTCHA:

• Easy for a human to decode
• Difficult for a Computer to recognize.



Why Decode CAPTCHAs??

• AI Problem
• Security Breach

CAPTCHAs are critical for security on internet, if they are no more secure, our 
system won’t be secure and we would have to think of alternatives.



     Preliminary Work Summary



Preliminary Work Summary

● Breaking CAPTCHAs is not a new concept.

● Mori and Malik [2] have broken EZ-Gimpy (92% success) and Gimpy (33% 

success) CAPTCHAs with sophisticated object recognition algorithms.

● People [3] also have used the following approach for CAPTCHA 

recognition:

○ Preprocessing. 

○ Segmentation.

○ Training the model for individual character recognition.

○ Generating sequence with highest probability.



Problems in Segmentation
● Segmentation is difficult as some digits could be overlapping with some 

other digits.
● Deformity of digits is also a major concern. For example, digit “2” can have 

a larger loop or just a cusp.
● Character orientation. Characters could be rotated at arbitrary angles 

making recognition difficult.
● Unknown scale of characters. We do not know how big a character would 

be. So, it is not known how big the segmentation boxes should be.



Idea behind our approach 

• Yann Le Cun used neural networks for handwritten digits 
recognition in 1990[6].

• Google has published a paper[4] in which they used 
convolutional neural networks to detect home addresses 
from street view home plate images.

• One more paper from Google[5] in which they used 
recurrent neural network to generate caption for an image.

We tried combining these ideas !
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Our Approach
• End to End model. Systems with multiple modules following conventional 

approach tend to behave poorly, because each module is optimized 

independently and the errors between modules compound. We learned an 

end to end model that predicts directly from pixels.

• Convolutional neural network for Image features and,

• Recurrent neural networks for generating output sequence.



  Neural Networks



Brief History of Neural Network

• Started way back in 1940’s.
• Became unpopular in 1960’s
• Regained popularity in 1980’s
• Recently have become one of the hottest areas in the field of 

machine learning.
• Applications involve face recognition used by Facebook, 

Image captioning used by Google etc.



What are Neural Networks

• Inspired from human brain

                        A simple neural network model

• Many input units and one output unit. 
• The inputs are scaled with weights on which an activation 

function is applied to get the output.



                          Multilayer neural network



Training Neural Networks

• Backpropagation algorithm.
• The problem is set up as minimization of a loss (objective) 

function.
• Weights are adjusted using gradients and learning rate.
• Gradients are computed using simple derivative chain rule.



Convolutional Neural Network

• Convolutional Neural Networks are a special kind of multi-layer neural 
networks.

•
• In 1995, Yann LeCun Et al. introduced the concept of convolutional neural 

networks [7].
•
• Convolutional Neural Networks are designed to recognize visual patterns 

directly from pixel images with no preprocessing.



Convolutional layer



Feature Extraction

• Shared weights: The same filter weights are applied to all the 
pixels. 

• It helps in detecting same feature at different locations of an 
image.

• This reduces the number of paramters to be learned.



Feature Extraction

For Instance, if image size is 200*50,
filter size is 5*5
and if there are 32 filters,
we have only 32*(5*5 +1) (1 for bias) = 832 weights to learn. 

• Otherwise it would have been number_of_pixels*number_of_pixels*filters, 
which would be 200*50*200*50*32 = 3.2 million. 

This is several orders of magnitude larger than what we have in CNNs.



Maxpool Layer

• Typically used after a CNN layer.
• Takes maximum of neighbouring pixels.
• Helps in rotational and translational invariance.



Recurrent Neural Networks

• Feedforward networks accept only fixed sized input and give output of 
fixed length, whereas RNNs can work with variable length inputs and 
outputs.

• In RNNs, connections between units have a directed cycle.
• Various applications of RNNs include handwriting recognition and speech 

recognition.
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https://en.wikipedia.org/wiki/Directed_cycle


LSTMs

• “Long Short Term Memory” networks are special kinds of RNNs.

• Vanishing and exploding gradient makes RNNs difficult to train.

• But in LSTMs, the error gets trapped in memory.



LSTMs

• Uses tanh (( ex - e-x )/( ex + e-x )) activation function.
• Forward and backward LSTMs 

                                                                                    tanh function



Softmax Layer

• Used for generating a probability distribution.
• Used typically in classification problems
• In our model, we use it to estimate probability of every 

character.



Framework and Dataset



Frameworks Used 

• We have used Theano.

• It is a publicly available, flexible library which optimizes, and evaluates 

mathematical expressions efficiently.

• It is available in Python so was easy to integrate with our project.

• It makes use of GPUs if present making tasks faster.



Frameworks Used

• Lasagne is a Python package to train neural networks. It uses Theano 
internally.

• It implements LSTM. Theano by itself does not have implementation of 
LSTMs.

• It implements the framework to keep track of all the neural network 
parameters like weights and biases. It makes it easy to save the 
parameters and initializes the model with pre-trained weights.

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne


Dataset Used

• Training requires lots of images.
• A standard dataset for CAPTCHAs is not available publicly.
• We generated dataset synthetically.
• Java module to generate CAPTCHAs with randomization of noise, 

characters and backgrounds.
• We generated fixed as well as variable length CAPTCHA dataset.
• 1 million simple images, 2 million complex images of fixed length(5), and 

13 million images of variable length.



Dataset

            Complex image                    Simple Image

• An image contains 4-7 characters, if it is variable length dataset or 5 
characters if it is a fixed length captcha.

• A character could be A-Z, a-z or 0-9.
• All the images generated are of same size i.e. (200*50).



Experiments



Convolution layers

• Input image was converted to single channel using “L” 
conversion.

• Number of filters used - 32
• Size of a filter - 5*5
• Zero padding
• Maxpooling done over 2*2



              Fixed length Model

2 CNN layers to learn image features.
A dense layer and a softmax layer to predict every character. 
Softmax lfgayers at the top share weights 
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Variable length model

2 CNNs to learn image features.
RNN to generate output sequence.
The same dense layer vector was inputted for every step of RNN.

RNNs
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Training
• Batch Size 1024 (images).
• Gradient clipping: We think that exploding gradients were pulling the model 

too far in different directions. Gradient clipping gave better results which might 
have helped in dampening the effect of exploding gradients.

• Special id 0 for ‘unk’ was used to signal termination.
• Images of different captcha length were batched together for 

randomization.
• High learning rates caused instability. So had to gradually decrease 

it, as the models would get stuck with high learning rates. 



Results



Results
Type of model Individual Character Accuracy

LSTM  fixed length (simple dataset) 99.9%

LSTM  fixed length (complex dataset) 98.48%

Multiple Softmax fixed length (simple dataset) 99.8%

Multiple Softmax fixed length (complex dataset) 98.96%

LSTM variable length with fixed length data 99.5%

LSTM variable length with variable length data 97.31%



Results

Type of model Sequence Accuracy

LSTM  fixed length (simple dataset) 99.8%

LSTM  fixed length (complex dataset) 91%

Multiple Softmax fixed length( simple dataset) 99%

Multiple Softmax fixed length (complex dataset) 96%

LSTM variable length with fixed length data 98%

LSTM variable length with variable length data 81%



Human Vs Computer

Human(Me): 3/ 10 were wrong

Computer: 1/10 was wrong

Human 2: 2/10 were wrong

Computer: 0/10 were wrong

Human 3: 4/15 were wrong

Computer: 2/15 were wrong



Graphs Generated





Variable length model variants 



DEMO



Conclusion



Conclusion

• Deep neural networks showed a really good performance in 
decoding CAPTCHAs with 80% and 99.8% accuracy for 
variable and fixed length CAPTCHAs respectively.

• CAPTCHAs are not more secure as computers can do better 
than humans.



Future Work



Future Work

• Will try to work on accuracy using more convolutional layers.

• Will make the system robust by increasing the variety in 
training data.



Project Links

Demo website:
http://cp-training.appspot.com/

GITHUB:
  https://github.com/bgeetika/Captcha-Decoder/

http://cp-training.appspot.com/
http://cp-training.appspot.com/
https://github.com/bgeetika/Captcha-Decoder/
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