
Advisor: Dr. Chris Pollett

Committee Members : Dr. Thomas Austin
and Mr. James Casaletto

Neural Net CAPTCHA Cracker
by

Geetika Garg

Agenda

• Introduction to Project
• Preliminary Work Summary
• Our Approach
• Neural Networks
• Experiments
• Results
• Conclusion
• Demo

Introduction to Project

• Tried decoding CAPTCHAs using deep neural
networks.

• CAPTCHA: Completely automated Public Turing test to
tell Computers and Humans Apart.

• Helps to distinguish between humans and computers.

• First mentioned in a paper by Moni Naor [1] in 1996

Characteristics of a CAPTCHA:

• Easy for a human to decode
• Difficult for a Computer to recognize.

Why Decode CAPTCHAs??

• AI Problem
• Security Breach

CAPTCHAs are critical for security on internet, if they are no more secure, our
system won’t be secure and we would have to think of alternatives.

 Preliminary Work Summary

Preliminary Work Summary

● Breaking CAPTCHAs is not a new concept.

● Mori and Malik [2] have broken EZ-Gimpy (92% success) and Gimpy (33%

success) CAPTCHAs with sophisticated object recognition algorithms.

● People [3] also have used the following approach for CAPTCHA

recognition:

○ Preprocessing.

○ Segmentation.

○ Training the model for individual character recognition.

○ Generating sequence with highest probability.

Problems in Segmentation
● Segmentation is difficult as some digits could be overlapping with some

other digits.
● Deformity of digits is also a major concern. For example, digit “2” can have

a larger loop or just a cusp.
● Character orientation. Characters could be rotated at arbitrary angles

making recognition difficult.
● Unknown scale of characters. We do not know how big a character would

be. So, it is not known how big the segmentation boxes should be.

Idea behind our approach

• Yann Le Cun used neural networks for handwritten digits
recognition in 1990[6].

• Google has published a paper[4] in which they used
convolutional neural networks to detect home addresses
from street view home plate images.

• One more paper from Google[5] in which they used
recurrent neural network to generate caption for an image.

We tried combining these ideas !

 Our Approach

Our Approach
• End to End model. Systems with multiple modules following conventional

approach tend to behave poorly, because each module is optimized

independently and the errors between modules compound. We learned an

end to end model that predicts directly from pixels.

• Convolutional neural network for Image features and,

• Recurrent neural networks for generating output sequence.

 Neural Networks

Brief History of Neural Network

• Started way back in 1940’s.
• Became unpopular in 1960’s
• Regained popularity in 1980’s
• Recently have become one of the hottest areas in the field of

machine learning.
• Applications involve face recognition used by Facebook,

Image captioning used by Google etc.

What are Neural Networks

• Inspired from human brain

 A simple neural network model

• Many input units and one output unit.
• The inputs are scaled with weights on which an activation

function is applied to get the output.

 Multilayer neural network

Training Neural Networks

• Backpropagation algorithm.
• The problem is set up as minimization of a loss (objective)

function.
• Weights are adjusted using gradients and learning rate.
• Gradients are computed using simple derivative chain rule.

Convolutional Neural Network

• Convolutional Neural Networks are a special kind of multi-layer neural
networks.

•
• In 1995, Yann LeCun Et al. introduced the concept of convolutional neural

networks [7].
•
• Convolutional Neural Networks are designed to recognize visual patterns

directly from pixel images with no preprocessing.

Convolutional layer

Feature Extraction

• Shared weights: The same filter weights are applied to all the
pixels.

• It helps in detecting same feature at different locations of an
image.

• This reduces the number of paramters to be learned.

Feature Extraction

For Instance, if image size is 200*50,
filter size is 5*5
and if there are 32 filters,
we have only 32*(5*5 +1) (1 for bias) = 832 weights to learn.

• Otherwise it would have been number_of_pixels*number_of_pixels*filters,
which would be 200*50*200*50*32 = 3.2 million.

This is several orders of magnitude larger than what we have in CNNs.

Maxpool Layer

• Typically used after a CNN layer.
• Takes maximum of neighbouring pixels.
• Helps in rotational and translational invariance.

Recurrent Neural Networks

• Feedforward networks accept only fixed sized input and give output of
fixed length, whereas RNNs can work with variable length inputs and
outputs.

• In RNNs, connections between units have a directed cycle.
• Various applications of RNNs include handwriting recognition and speech

recognition.

Input layer

Hidden layer

Recurrent layer Recurrent layerRecurrent layer

Output layer Output layerOutput layer

RNN unrolled

Input layer

Hidden layer

Recurrent layer

Output layer

RNN

https://en.wikipedia.org/wiki/Directed_cycle

LSTMs

• “Long Short Term Memory” networks are special kinds of RNNs.

• Vanishing and exploding gradient makes RNNs difficult to train.

• But in LSTMs, the error gets trapped in memory.

LSTMs

• Uses tanh ((ex - e-x)/(ex + e-x)) activation function.
• Forward and backward LSTMs

 tanh function

Softmax Layer

• Used for generating a probability distribution.
• Used typically in classification problems
• In our model, we use it to estimate probability of every

character.

Framework and Dataset

Frameworks Used

• We have used Theano.

• It is a publicly available, flexible library which optimizes, and evaluates

mathematical expressions efficiently.

• It is available in Python so was easy to integrate with our project.

• It makes use of GPUs if present making tasks faster.

Frameworks Used

• Lasagne is a Python package to train neural networks. It uses Theano
internally.

• It implements LSTM. Theano by itself does not have implementation of
LSTMs.

• It implements the framework to keep track of all the neural network
parameters like weights and biases. It makes it easy to save the
parameters and initializes the model with pre-trained weights.

https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne
https://github.com/Lasagne/Lasagne

Dataset Used

• Training requires lots of images.
• A standard dataset for CAPTCHAs is not available publicly.
• We generated dataset synthetically.
• Java module to generate CAPTCHAs with randomization of noise,

characters and backgrounds.
• We generated fixed as well as variable length CAPTCHA dataset.
• 1 million simple images, 2 million complex images of fixed length(5), and

13 million images of variable length.

Dataset

 Complex image Simple Image

• An image contains 4-7 characters, if it is variable length dataset or 5
characters if it is a fixed length captcha.

• A character could be A-Z, a-z or 0-9.
• All the images generated are of same size i.e. (200*50).

Experiments

Convolution layers

• Input image was converted to single channel using “L”
conversion.

• Number of filters used - 32
• Size of a filter - 5*5
• Zero padding
• Maxpooling done over 2*2

 Fixed length Model

2 CNN layers to learn image features.
A dense layer and a softmax layer to predict every character.
Softmax lfgayers at the top share weights

Dense layer

Maxpool Layer

Convolutional
layer

Convolutional
layer

Maxpool layer

Softmax layer

Dense layer

Softmax layer

Dense layer

Softmax layer

Dense layer

Softmax layer

Dense layer

Softmax layer

Variable length model

2 CNNs to learn image features.
RNN to generate output sequence.
The same dense layer vector was inputted for every step of RNN.

RNNs

Dense layer

Maxpool Layer

Convolutional Layer

Convolutional Layer

Maxpool layer

Recurrent Layer Recurrent layerRecurrent layer

Softmax layer Softmax layerSoftmax layer

Training
• Batch Size 1024 (images).
• Gradient clipping: We think that exploding gradients were pulling the model

too far in different directions. Gradient clipping gave better results which might
have helped in dampening the effect of exploding gradients.

• Special id 0 for ‘unk’ was used to signal termination.
• Images of different captcha length were batched together for

randomization.
• High learning rates caused instability. So had to gradually decrease

it, as the models would get stuck with high learning rates.

Results

Results
Type of model Individual Character Accuracy

LSTM fixed length (simple dataset) 99.9%

LSTM fixed length (complex dataset) 98.48%

Multiple Softmax fixed length (simple dataset) 99.8%

Multiple Softmax fixed length (complex dataset) 98.96%

LSTM variable length with fixed length data 99.5%

LSTM variable length with variable length data 97.31%

Results

Type of model Sequence Accuracy

LSTM fixed length (simple dataset) 99.8%

LSTM fixed length (complex dataset) 91%

Multiple Softmax fixed length(simple dataset) 99%

Multiple Softmax fixed length (complex dataset) 96%

LSTM variable length with fixed length data 98%

LSTM variable length with variable length data 81%

Human Vs Computer

Human(Me): 3/ 10 were wrong

Computer: 1/10 was wrong

Human 2: 2/10 were wrong

Computer: 0/10 were wrong

Human 3: 4/15 were wrong

Computer: 2/15 were wrong

Graphs Generated

Variable length model variants

DEMO

Conclusion

Conclusion

• Deep neural networks showed a really good performance in
decoding CAPTCHAs with 80% and 99.8% accuracy for
variable and fixed length CAPTCHAs respectively.

• CAPTCHAs are not more secure as computers can do better
than humans.

Future Work

Future Work

• Will try to work on accuracy using more convolutional layers.

• Will make the system robust by increasing the variety in
training data.

Project Links

Demo website:
http://cp-training.appspot.com/

GITHUB:
 https://github.com/bgeetika/Captcha-Decoder/

http://cp-training.appspot.com/
http://cp-training.appspot.com/
https://github.com/bgeetika/Captcha-Decoder/

References
[1] Moni Naor. Verification of a human in the loop or Identification via the Turing Test. Unpublished Manuscript, 1997.

[2] Greg Mori and Jitendra Malik. Recognising Objects in Adversarial Clutter: Breaking a Visual CAPTCHA, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR'03), Vol 1, June 2003, pp.134-141.

[3] Kumar Chellapilla, Patrice Y. Simard Using Machine Learning to Break VisualHuman Interaction Proofs (HIPs) Microsoft

Research, one microsoft way, WA 98052 -2005

[4] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet. Multi-digit Number Recognition from Street View

Imagery using Deep Convolutional Neural Networks,14 Apr 2014.

[5] Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural Image Caption Generator, 20 Apr

2015

[6] Y.Le Cun Et. al. Handwriting Character Recognition using Neural Network Architecture.1990

[7] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time-series. In M. A. Arbib, editor, The Handbook of

Brain Theory and Neural Networks. MIT Press, 1995.

References
[8] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press,

2001.

[9] H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 2004.

[10] W. Maass, T. Natschläger, and H. Markram. A fresh look at real-time computation in generic recurrent neural circuits.

Technical report, Institute for Theoretical Computer Science, TU Graz, 2002.

[11] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, J. Schmidhuber. A Novel Connectionist System for Improved

Unconstrained Handwriting Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, 2009.

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, Y. Bengio - Theano: a CPU and

GPU Math Expression Compiler.

 QUESTIONS?

 THANK YOU !!

